329 research outputs found

    Surface-wave damping in a brimful circular cylinder

    Get PDF
    The natural frequencies and damping rates of surface waves in a circular cylinder with pinned-end boundary conditions are calculated in terms of the gravitational Reynolds and Bond numbers, C[minus sign]1 and B, and the slenderness of the cylinder [Lambda], in the limit C[rightward arrow]0. We consider higher-order approximations that include the effect of viscous dissipation in the Stokes boundary layers and the bulk. A comparison with clean-surface experiments by Henderson & Miles (1994) shows a satisfactory agreement except for the first axisymmetric mode, which exhibits a 26% discrepancy. The much larger dramatic discrepancy of former theoretical predictions is hereby improved and explained

    Localized Dispersive States in Nonlinear Coupled Mode Equations for Light Propagation in Fiber Bragg Gratings.

    Get PDF
    Dispersion effects induce new instabilities and dynamics in the weakly nonlinear description of light propagation in fiber Bragg gratings. A new family of dispersive localized pulses that propagate with the group velocity is numerically found, and its stability is also analyzed. The unavoidable different asymptotic order of transport and dispersion effects plays a crucial role in the determination of these localized states. These results are also interesting from the point of view of general pattern formation since this asymptotic imbalance is a generic situation in any transport-dominated (i.e., nonzero group velocity) spatially extended system

    Nuevos registros para dos Telipogon (Orchidaceae) endémicas peruanas, incluyendo un registro inesperado de Telipogon ariasii

    Get PDF
    The paper registers for first time to Telipogon selbyanus in southern Peru and new records to Telipogon ariasii. A new record of Telipogon ariasii was found surprisingly ca. 2000 m a.s.l. below the type location. Herein I provide taxonomic notes, a distribution map and the updated conservation status of both species.La nota registra por primera vez a Telipogon selbyanus en el sur de Perú y nuevos registros para Telipogon ariasii. Un nuevo registro de Telipogon ariasii fue encontrado sorprendentemente a 2000 m.s.n.m. por debajo de la localidad tipo. Se proveen notas taxonómicas, un mapa de distribución y una categorización actualizada del estado de conservación de ambas especies

    Relation-Changing Logics as Fragments of Hybrid Logics

    Full text link
    Relation-changing modal logics are extensions of the basic modal logic that allow changes to the accessibility relation of a model during the evaluation of a formula. In particular, they are equipped with dynamic modalities that are able to delete, add, and swap edges in the model, both locally and globally. We provide translations from these logics to hybrid logic along with an implementation. In general, these logics are undecidable, but we use our translations to identify decidable fragments. We also compare the expressive power of relation-changing modal logics with hybrid logics.Comment: In Proceedings GandALF 2016, arXiv:1609.0364

    Satisfiability for relation-changing logics

    Get PDF
    Relation-changing modal logics (RC for short) are extensions of the basic modal logic with dynamic operators that modify the accessibility relation of a model during the evaluation of a formula. These languages are equipped with dynamic modalities that are able e.g. to delete, add and swap edges in the model, both locally and globally. We study the satisfiability problem for some of these logics.We first show that they can be translated into hybrid logic. As a result, we can transfer some results from hybrid logics to RC. We discuss in particular decidability for some fragments. We then show that satisfiability is, in general, undecidable for all the languages introduced, via translations from memory logics.Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; ArgentinaFil: Fervari, Raul Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; ArgentinaFil: Hoffmann, Guillaume Emmanuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física. Sección Ciencias de la Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martel, Mauricio. Universitat Bremen; Alemani

    Asymptotic description of maximum mistuning amplification of bladed disk forced response

    Full text link
    The problem of determining the maximum forced response vibration amplification that can be produced just by the addition of a small mistuning to a perfectly cyclical bladed disk still remains not completely clear. In this paper we apply a recently introduced perturbation methodology, the Asymptotic Mistuning Model (AMM), to determine which are the key ingredients of this amplification process are, and to evaluate the maximum mistuning amplification factor that a given modal family with a particular distribution of tuned frequencies can exhibit. A more accurate upper bound for the maximum forced response amplification of a mistuned bladed disk is obtained from this description, and the results of the AMM are validated numerically using a simple mass-spring model

    Dynamics of counterpropagating waves in parametrically driven systems: dispersion vs. advection

    Full text link
    The dynamics of parametrically driven counterpropagating waves in a one-dimensional extended nearly conservative annular system are described by two coupled, damped, parametrically driven nonlinear Schrödinger (NLS) equations with opposite transport terms due to the group velocity, and small dispersion. The system is characterized by two length scales defined by a balance between (a) forcing and dispersion (the dispersive scale), and (b) forcing and advection at the group velocity (the transport scale). Both are large compared to the basic wavelength of the pattern. The dispersive scale plays an important role in the structure of solutions arising from secondary instabilities of frequency-locked spatially uniform standing waves (SW), and manifests itself both in traveling pulses or fronts and in extended spatio-temporal chaos, depending on the signs of the dispersion coefficient and nonlinearity. Author Keywords: Parametric resonance; Counterpropagating waves; Weak dispersion; Faraday wave

    Streaky 3D Structures in the Boundary Layer

    Get PDF
    It has been recently shown [Choi, Nature, April 06 - Cossu, PRL, February 06] that 3D streaky structures in the boundary layer can remain laminar longer than the 2D Blasius °ow. The aim of this investigation is to study the possibility of promoting these 3D streaky structures via surface roughness, computing them and evaluat- ing the resulting stabilization using the Reduced Navier Stokes equations (RNS). The RNS are derived from Navier-Stokes making use of the fact that two very di®erent scales are present: one slow (streamwise direc- tion) and two short (spanwise and wall-normal direction). The RNS allows us to perform these 3D computations in a standard PC, without using CPU costly DNS simulations

    Dynamics of a hyperbolic system that applies at the onset of the oscillatory instability

    Get PDF
    A real hyperbolic system is considered that applies near the onset of the oscillatory instability in large spatial domains. The validity of that system requires that some intermediate scales (large compared with the basic wavelength of the unstable modes but small compared with the size of the system) remain inhibited; that condition is analysed in some detail. The dynamics associated with the hyperbolic system is fully analysed to conclude that it is very simple if the coefficient of the cross-nonlinearity is such that , while the system exhibits increasing complexity (including period-doubling sequences, quasiperiodic transitions, crises) as the bifurcation parameter grows if ; if then the system behaves subcritically. Our results are seen to compare well, both qualitatively and quantitatively, with the experimentally obtained ones for the oscillatory instability of straight rolls in pure Rayleigh - Bénard convection

    Computation of nonlinear streaky structures in boundary layer flow

    Get PDF
    In this work, the Reduced Navier Stokes (RNS) are numerically integrated, and used to calculate nonlinear finite amplitude streaks. These structures are interesting since they can have a stabilizing effect and delay the transition to the turbulent regime. RNS formulation is also used to compute the family of nonlinear intrinsic streaks that emerge from the leading edge in absence of any external perturbation. Finally, this formulation is generalized to include the possibility of having a curved bottom wal
    corecore